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Abstract— Zero-shot sketch-based image retrieval (ZS-SBIR)
is a specific cross-modal retrieval task that involves searching
natural images through the use of free-hand sketches under the
zero-shot scenario. Most previous methods project the sketch
and image features into a low-dimensional common space for
efficient retrieval, and meantime align the projected features to
their semantic features (e.g., category-level word vectors) in order
to transfer knowledge from seen to unseen classes. However,
the projection and alignment are always coupled; as a result,
there is a lack of explicit alignment that consequently leads
to unsatisfactory zero-shot retrieval performance. To address
this issue, we propose a novel progressive cross-modal semantic
network. More specifically, it first explicitly aligns the sketch
and image features to semantic features, then projects the
aligned features to a common space for subsequent retrieval.
We further employ cross-reconstruction loss to encourage the
aligned features to capture complete knowledge about the two
modalities, along with multi-modal Euclidean loss that guarantees
similarity between the retrieval features from a sketch-image
pair. Extensive experiments conducted on two popular large-scale
datasets demonstrate that our proposed approach outperforms
state-of-the-art competitors to a remarkable extent: by more than
3% on the Sketchy dataset and about 6% on the TU-Berlin
dataset in terms of retrieval accuracy.

Index Terms— Zero-shot learning, sketch-based image
retrieval, progressive generation.

I. INTRODUCTION

DUE to explosive growth of image content on the Internet,
image retrieval has come to play an important role

in many fields, including e-commerce, medical diagnosis,
and remote sensing. Conventional image retrieval methods
[1]–[3] require providing textual descriptions that are in many
cases difficult to obtain. On mobile devices, image retrieval
with free-hand sketches, where target candidates are illustrated
visually and concisely, has attracted widespread attention and
formed the basis of Sketch-Based Image Retrieval (SBIR). It is
difficult to guarantee that all categories are able to be trained in
realistic scenarios, which results in unsatisfactory performance
when tested on unseen categories. Therefore, a more realis-
tic setting has emerged, namely ZS-SBIR, which combines
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zero-shot learning (ZSL) and SBIR. However, ZS-SBIR is
extremely challenging, since it deals simultaneously with the
significant domain gap, large intra-class variances, and limited
knowledge about the unseen classes.

This kind of problem (involving multi-modal data) is of
great research significance in the field of computer vision.
One popular solution is projecting multi-modal data into a
common space. Following this vein, a number of research
works have been proposed. For example, [4]–[6] sought to
achieve better metric distance between multi-modal data.
I2LT [7] learned an effective and robust projection by jointly
considering intermodal and intramodal label transfers, which
builds a bridge to align different modalities for extremely
rare or unseen classes. Similarly, previous ZS-SBIR works
have attempted to solve this problem through projecting sketch
and image features to a low-dimensional common space for
retrieval, then adopting label information or category-level
word vectors in order to constrain the relationship between the
projected features, as shown in Figure 1(a) and Figure 1(b).
Among them, label information lacks the ability to conduct
relation modeling among categories, meaning that semantic
knowledge cannot be bridged from training categories to test
ones. Therefore, word vectors, with their ability to model the
relationships among categories, have attracted ever-increasing
attention [8]–[10]. In order to constrain the relationships
between the projected features in a low-dimensional space,
most existing methods simultaneously project sketch/image
features and label/semantic supervision to a low-dimensional
common space. However, this type of operation deteriorates
the original semantic knowledge, since the low-dimensional
projection lacks explicit alignment; that is, the projected
features are not aligned to the original word vectors. Moreover,
previous works have guaranteed only the mapping of the
sketch or image modality to a common semantic space and
their translation back to the original modality, while ignoring
the relationship between the projected features of the current
modality and the corresponding modality, thereby rendering
the knowledge of projected features insufficient. To overcome
the above drawbacks, we argue that only when the projected
features have been explicitly aligned in semantic space will
they be beneficial to the generation of more effective retrieval
features under the zero-shot scenario. Hence, we present
our progressive solution characterized by first aligning and
then decoding, as shown in Figure 1(c). Moreover, since
the projected features should possess the knowledge of two
modalities, we propose a cross-reconstruction loss to ensure
that the projected features can reconstruct not only their own
modality but also the corresponding modality.
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Fig. 1. Three different ways to align sketch and image features into the common space. The methods illustrated in Figure 1(a) and Figure 1(b) project
sketch and image features into a low-dimensional common space for efficient retrieval, while also utilizing the label or word vectors to constrain the relation
between the projected features. Figure 1(c) illustrates our method, which first explicitly aligns the sketch and image features to word vectors, then projects
them into a common retrieval space.

Accordingly, in this article, we propose a two-branch pro-
gressive cross-modal semantic network for the ZS-SBIR task:
here, each branch first explicitly aligns the sketch and image
features to the semantic features in an adversarial manner,
then utilizes the decoder to project them into a common
retrieval space. This strategy can align sketch and image
features with the word vectors, which is conducive to the
transfer of knowledge under the zero-shot scenario. Moreover,
since the semantic features should encode complete knowledge
about the two modalities, the cross-reconstruction loss is
introduced to ensure that the semantic features can reconstruct
the input of not only the current original modality but also the
corresponding modality. In addition, imposing classification
loss on retrieval features ensures that the retrieval features
will be discriminative, while the multi-modal Euclidean loss
can ensure that the retrieval features of the same class from
different modalities will be more similar. It should be noted
that the parameters of decoders in each branch are shared in
order to alleviate over-fitting.

The main contributions of this work can be summarized as
follows:

• We propose a progressive projection to effectively solve
the knowledge loss problem that arises due to the lack
of explicit alignment, which is conducive to knowledge
transfer.

• The cross-reconstruction loss ensures that the semantic
features possess complete knowledge concerning the
modalities of sketch and image, which enables the
problem of limited knowledge to be solved.

• Extensive experiments on two popular large-scale datasets
demonstrate that our proposed approach greatly out-
performs state-of-the-art methods by more than 3% on
Sketchy [11] and about 6% on TU-Berlin [12] in terms
of retrieval accuracy.

II. RELATED WORK

In this section, we briefly review the prior literature in the
fields of SBIR, ZSL and ZS-SBIR.

A. Sketch-Based Image Retrieval
The domain gap between the sketch and image represen-

tations is the main challenge in SBIR. Accordingly, existing

approaches mostly focus on bridging the domain gap between
sketch and image. Approaches to this can be broadly divided
into two categories: hand-crafted features-based methods and
deep learning-based ones. The hand-crafted features-based
methods mostly attempt to bridge the domain gap by using
edge-maps extracted from images; examples include the
gradient field HOG descriptor [13], histogram of oriented
edges [14], and Learned Key Shapes (LKS) [15]. Moreover,
with the development of deep learning, convolutional neural
networks (CNNs) have become widely utilized in computer
vision fields. Yu et al. [16] first attempted to use CNN for
sketch classification, obtaining better feature representation for
both sketch and image. Moreover, Siamese architecture [17]
can obtain a better metric of retrieval distance, which is benefi-
cial for conducting retrieval. Triplet ranking loss [11] has also
been adopted for coarse-grained SBIR, which obtains an effec-
tive metric by pulling the same category closer and pushing
the different categories further away. Recently, CPRL [18] pro-
posed a novel cross-modality representation learning paradigm
with coupled dictionary learning to obtain robust cross-domain
representations for SBIR. For instance-level SBIR, moreover
a multi-scale, multi-channel, deep neural network frame-
work [19] has been specifically designed to accommodate
the unique characteristics of sketches, including multiple lev-
els of abstraction. In this article, we propose a two-branch
progressive cross-modal semantic network, in which each
branch projects features to a common semantic space via
adversarial training. In addition, the projected features are
regularized to translate back to not only their own modality,
but also the other corresponding modality, which is an effec-
tive means of reducing the domain gap between sketch and
image.

B. Zero-Shot Learning

Due to the high cost of data collection and annotation,
zero-shot learning has attracted extensive attention in many
fields, such as image tagging [20], cross-modal retrieval [21],
and action recognition [22]. Existing zero-shot approaches can
be classified into two categories: namely, embedding-based
and generative-based approaches. Some approaches in the first
category learn non-linear multi-modal embedding [23]–[27];
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most of these focus on learning non-linear mapping from the
image space to the semantic space. As for generative-based
approaches, a conditional generative moment matching net-
work [28] has been proposed to synthesize the features of
unseen categories. Semantics-Preserving Adversarial Embed-
ding Network (SP-AEN) [10] has been proposed to preserve
semantic information during image feature synthesis, which
is conducive to ensuring that the synthesized features pos-
sess more knowledge. Moreover, side information is required
under the zero-shot scenario, such that the knowledge can be
learned from seen classes and transferred to unseen classes.
One popular form of side information is attributes [29],
which require costly expert annotation. Therefore, some stud-
ies [26], [30], [31] have utilized other auxiliary informa-
tion, such as text-based [32] or hierarchical models [33]
for label embedding. In this work, the side information is
combined from two different semantic knowledge models; this
ensures that the whole model can more effectively transfer
knowledge from seen to unseen classes under the zero-shot
scenario.

C. Zero-Shot Sketch-Based Image Retrieval

In recent years, ZS-SBIR, a combination of ZSL with SBIR,
has attracted an ever-increasing amount of research interest.
The first ZS-SBIR work [34] consists of sketch and image
binary encoders, utilizing a multi-modal learning network
to mitigate heterogeneity between two different modalities.
CVAE [35] attempted to synthesize the image features of
corresponding sketches by utilizing conditional variational
auto-encoders, then conducted retrieval on the image aspect.
A recent work, SEM-PCYC [36], proposed a semantically
aligned cycle-consistent generative model that maintains a
cycle consistency that only requires supervision at cate-
gory levels. Moreover, the content-style decomposition-based
model [37] utilized the concept of content-style separation
for the ZS-SBIR task, disentangling the original data repre-
sentations into semantic-aware domain-invariant content and
data-specific variations. By contrast, we propose a progressive
way of mapping visual features to a common semantic space,
first through training with a common discriminator, then by
decoding the semantic features to obtain the retrieval features.
The cross-reconstruction loss imposed on each branch allows
the semantic features to possess more complete knowledge.

III. METHODOLOGY

Given a particular sketch, our goal is to retrieve the cor-
responding images from the natural image gallery under the
zero-shot setting; that is, the sketch categories of the training
set and the test set are disjoint.

We first provide a formal definition of the ZS-SBIR task.
Let Dtr = {(xske

i , ximg
i , sseen

i , yi )}Ns
i=1 be the training set with

Ns samples and Dte = {(xske
i , yi )}Ns +Nu

i=Ns+1
be the test set with

Nu samples, where xske
i , ximg

i , sseen
i and yi are the sketch, nat-

ural image, semantic knowledge and label respectively. Their
corresponding label spaces are Ytrain = {1, 2, 3, . . . , C1} and
Ytest = {C1 + 1, C1 + 2, . . . , C1 + C2}, which satisfy the
zero-shot setting Ytrain ∩Ytest = ∅. Therefore, the sketch and
image data from the seen categories are used only for training.

Moreover, S = {sseen
i }Ns

i=1 is the set of side information. At the
test stage, given an xske

i taken from Dte, the objective of
ZS-SBIR is to retrieve the corresponding natural images from
the test image retrieval gallery.

The architecture of our proposed model is illustrated in
Figure 2. Our model consists of a semantic knowledge
embedding for providing side information and a progressive
cross-modal network to synthesize retrieval features. In order
to solve the problem of knowledge loss arising due to a lack
of explicit alignment, the progressive cross-modal network
first obtains the semantic features by aligning the projected
features to the word vectors in an adversarial fashion, then
decodes the semantic features to obtain the retrieval features.
The cross-cycle consistency constraint on each branch ensures
that the sketch or image modality are mapped to a common
semantic space, then subsequently translated back to not only
the original modality but also the corresponding modality;
this ensures that the semantic features possess more complete
knowledge concerning both modalities. Moreover, sharing the
parameters between retrieval feature decoders can alleviate
over-fitting. In addition, imposing a classification loss and
multi-modal Euclidean loss on the retrieval features allows
for the generation of highly discriminative features. The
main goal of our model is to learn three mapping functions:
Gθske (·), Gθimg (·) and the retrieval feature decoder function
D̂θD̂

(·).

A. Semantic Feature Generation
In zero-shot learning, it is important to provide semantic

information that can act as knowledge supervision when
learning semantic features. Our proposed model utilizes
text-based embedding and hierarchical embedding to provide
such supervision.

1) Semantic Knowledge Embedding: In this article,
we adopt two widely-used text-based models to obtain text
representations: namely, Word2Vec [32] and GloVe [38].
Word2Vec can map words into vector space, where the rela-
tionships between words can be built. Compared with the
bag-of-words model and TF-IDF model, Word2Vec can better
capture the semantic information of words and measure the
similarity between words. Moreover, GloVe constructs a word
co-occurrence matrix based on a corpus, then learns word
vectors based on a word co-occurrence matrix. For hierarchical
embedding, we adopt the hierarchical dictionary WordNet1

to obtain the semantic similarity. Under the zero-shot set-
ting, we only consider the seen classes when measuring the
semantic similarity between words in the hierarchy model. The
hierarchical embedding for the Sketchy and TU-Berlin datasets
therefore contains 354 and 664 nodes, respectively.

2) Generative Adversarial Mechanism: As illustrated
in Figure 2, each branch contains a generator and a com-
mon discriminator. Taking a training sketch-image pair as
an example, their features are extracted from a VGG16 [39]
network pre-trained on ImageNet [40] dataset (before the
last pooling layer). The goal of adversarial learning is to
learn semantic features in an adversarial fashion, which means

1https://wordnet.princeton.edu/
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Fig. 2. Our network generates retrieval features in a progressive way. First, each branch aligns the sketch and image features to the semantic space in an
adversarial fashion. The word vectors based on text and hierarchical models produce a semantic representation that serves as a true example to the discriminator.
Meanwhile, the cross-reconstruction loss is beneficial to improving the high-level knowledge representation of the semantic features. Subsequently, the decoders
with shared parameters take the semantic features as input and obtain the retrieval features. The classification loss and multi-modal Euclidean loss are utilized
to regularize the generation of retrieval features.

that the semantic features are expected to be similar to the
word vectors by ‘fooling’ the discriminator DθD . Specifically,
the objective can be formulated as follows:

Ladv = 2 × Esseen (log DθD (sseen))

+ Exske (log[1 − DθD (Gθske (xske))])
+ Eximg (log[1 − DθD (Gθimg (ximg))]), (1)

where xske, ximg , sseen , Gθske (·), Gθimg (·) and DθD (·) denote
the sketch features, image features, word vectors with seman-
tic knowledge, sketch semantic generation function, image
semantic generation function and discriminator function,
respectively. Moreover, the sketch semantic generation net-
work Gθske (·), image generation network Gθimg (·) and discrim-
inator network DθD (·) are parameterized by θske, θimg and θD.
Here, Gθske (·) and Gθimg (·) minimize the objective, while the
opponent DθD (·) tries to maximize it.

3) Cross-Reconstruction Constraint: Although mapping
sketch features and image features to a common semantic
space by means of a generative adversarial mechanism effec-
tively reduces the domain gap and the intra-class vari-
ances, the semantic features do not guaranteed that the input
xske/ximg and the output xsem are matched well, which is
not conducive to knowledge transfer. Since the semantic
features learned from each branch belong to the same semantic
space, they ought to be able to reconstruct both the orig-
inal sketch and the image features well. To this end, two
decoders are designed to decode the semantic features in order
to reconstruct both the original sketch and image features.
Subsequently, we introduce the cross-reconstruction loss to
ensure that the reconstructed features will be similar to the
original features. Therefore, the cross-reconstruction losses in

sketch and image branches can be formulated as follows:
Lrec_ske = ||x̃ ske

ske − xske ||22 + ||x̃ ske
img − xske ||22, (2)

Lrec_img = ||x̃ img
ske − ximg ||22 + ||x̃ img

img − ximg ||22, (3)

where xske denotes the sketch features; ximg denotes the
natural image features; x̃ ske

ske denotes the reconstructed sketch
features based on the semantic features learned from the sketch
branch; x̃ ske

img denotes the reconstructed sketch features based

on the semantic features learned from the image branch; x̃ img
ske

denotes the reconstructed image features based on the semantic
features learned from the sketch branch, and x̃ img

img denotes the
reconstructed image features based on the semantic features
learned from the image branch. The above features can be
depicted as follows:

x̃ ske
ske = Rθ ′

ske
(xsem

ske ), (4)

x̃ ske
img = Rθ ′

ske
(xsem

img ), (5)

x̃ img
ske = Rθ ′

img
(xsem

ske ), (6)

x̃ img
img = Rθ ′

img
(xsem

img ), (7)

where Rθ ′
ske

(·) and Rθ ′
img

(·) denote the reconstruction function
on the sketch branch and the image branch respectively;
xsem

ske and xsem
img stand for the semantic features learned from

the sketch branch and image branch respectively. The total
cross-reconstruction loss can be formulated as follows:

Lrec = Lrec_ske + Lrec_img . (8)

B. Retrieval Feature Generation
1) Classification Constraint: It should be noted that the

semantic features learned from the two branches are con-
strained only by adversarial loss and cross-reconstruction loss;
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these can only provide sufficient semantic knowledge, but
cannot ensure that the features will be class-discriminative.
However, whether or not the retrieval features are discrimina-
tive affects the metric in distance space, which is extremely
important for the retrieval task. In order to alleviate this issue,
two decoders with shared parameters are trained to decode
semantic features to obtain retrieval features. Meanwhile,
the category classifiers are introduced after the two branches to
generate the retrieval features. By implementing this method,
our approach makes retrieval features more discriminative
and also alleviates over-fitting by sharing the parameters of
the retrieval feature decoders. The loss can be written as
follows:

Lcls = −E[log P(y|xret
ske)] − E[log P(y|xret

img)], (9)

where y is the category label of xske and ximg , while xret
ske

and xret
img denote the retrieval features generated by the sketch

and image branches respectively. The generation of these two
features can be expressed as follows:

xret
ske = D̂θD̂

(xsem
ske ), (10)

xret
img = D̂θD̂

(xsem
img ), (11)

where D̂θD̂
(·) is the decoder function that takes the semantic

features as inputs and the retrieval features as outputs.
2) Multi-Modal Euclidean Loss: Although sketch-image

pairs are drawn from different modalities, their categories are
the same, meaning that the retrieval features generated by
the network should be similar. To this end, a multi-modal
Euclidean loss is introduced to increase the similarity of the
retrieval features of the same class from different modalities.
The loss can be formulated as follows:

Lcmt = ||xret
ske − xret

img ||22. (12)

C. Objective and Optimization

The full objective of our proposed model can be expressed
as follows:
L=λadv ×Ladv+λrec ×Lrec +λcls ×Lcls +λcmt ×Lcmt ,

(13)

where the first and second terms are combined to indicate
the loss of generating semantic features, while the last two
terms are utilized to regularize the generation procedure of
the retrieval features. Moreover, λadv , λrec , λcls and λcmt

are coefficients used to balance the overall performance. The
whole model is optimized with Adam [41] in PyTorch; details
of the optimization are presented in Algorithm 1.

Since the generators Gθske (·) and Gθimg (·) minimize Ladv

against an opponent discriminator DθD (·) that tries to max-
imize Ladv , the objective Ladv can be divided into the loss
of the generator (denoted as Lgen), and the loss of the dis-
criminator (denoted as Ldis ). During the optimization process,
we minimize Lgen to make the generated semantic features
more realistic, as well as minimize Ldis to make the discrim-
inator more discriminative. In this article, we optimize our
proposed model by first updating the discriminator’s network
parameters with Ldis , then updating the network parameters
with the sum of Lgen , Lrec , Lcls and Lcmt .

Algorithm 1 Training Procedure for Our Model

IV. EXPERIMENTS

A. Datasets and Settings
There are two large-scale sketch datasets, i.e. Sketchy [11]

and TU-Berlin [12], that are widely used for ZS-SBIR.
Therefore, we opt to conduct our experiments on these two
datasets.

Sketchy is a large-scale sketch dataset that originally con-
sisted of 75,479 sketches and 12,500 images from 125 cate-
gories. Liu et al. [44] subsequently extended the image gallery
by collecting an extra 60,502 images from ImageNet [40], such
that the total number of images in the extended dataset is
now 73,002. Following the zero-shot data partitioning method
outlined in SEM-PCYC [36], we select the same 25 categories
as the unseen test set for ZS-SBIR, while the remaining
100 seen classes are used for training.

TU-Berlin consists of 20,000 unique free-hand sketches
distributed evenly over 250 object categories. Unlike
Sketchy [11], TU-Berlin [12] has only category-level matches
rather than instance-level matches. In line with the settings
outlined in SEM-PCYC [36], the same 30 categories are
selected as a query set in the retrieval gallery, while the
remaining 220 classes are utilized for training.

To evaluate the performance of the proposed approach,
we follow the sketch-based image retrieval evaluation criterion
utilized in most previous works [34], [36] in terms of mean
average precision (mAP@all) and precision considering the
top 100 (Precision@100). Given a query sketch and a list of
K ranked retrieval results, the AP for this query is defined as
follows:

AP(K ) = 1

K

K∑

n=1

δ(r), (14)
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Fig. 3. The top 10 images retrieved by our model on the two datasets. The red borders indicate that the retrieved images do not belong to the correct class.

where δ(r) = 1 when the r -th retrieved candidate corresponds
to the query; otherwise, δ(r) = 0. The mAP for this query
takes ranking information into consideration and can be
formulated as follows:

m AP(K ) = 1

K

K∑

n=1

AP(r). (15)

B. Implementation Details
Our model is trained by using the Adam [41] optimizer on

PyTorch with an initial learning rate lr = 0.0001, β1 = 0.5,
β2 = 0.99. The input size of the image is 224 × 224. We use
the grid search method to select coefficients and determine the
best coefficients based on their performance on the validation
set. Specifically, the value set of λadv is {0.5, 1.0}, while the
value set of the remaining coefficients is {0.1, 0.2, 0.4, 0.5,
1.0}. After searching, we obtain the best coefficients of each
loss, which are λadv = 1.0, λrec = 1.0, λcls = 0.4, λcmt =
0.4 on Sketch [11] and λadv = 1.0, λrec = 0.5, λcls = 0.1,
λcmt = 0.4 on TU-Berlin [12].

For feature extraction, we adopt the VGG16 [39] model
pre-trained on the ImageNet [40] dataset as a feature extrac-
tor for both sketches and images. Moreover, the text-based

model [32] trained on Wikipedia is adopted to extract word
vectors with dimension of 300. Furthermore, under the
zero-shot setting, only the seen classes ought to be consid-
ered when constructing the hierarchy for obtaining the class
embedding. Therefore, the hierarchical model [33] contains
354 and 664 nodes for Sketchy [11] and TU-Berlin [12],
respectively. Firstly, the word vectors from the text-based
model and the hierarchical model are concatenated and used
as knowledge supervision for the learning of the semantic
features. The semantic features are obtained in a generative
adversarial fashion, and the decoder is introduced to obtain
the 64-dimensional retrieval features. During the testing stage,
all test sketches and images are inputted into the network
to obtain the retrieval features. Subsequently, the distance
between the retrieval features of the sketch and all the nat-
ural image retrieval features in the test image dataset are
calculated. Finally, we select the top 100 most similar images
and compute the accuracy. Although our method does not
produce binary hash code as a final representation for matching
the sketch and image, the iterative quantization (ITQ) [50]
algorithm can be used directly to generate the binary
codes.
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Fig. 4. As the number of training epochs increases, the loss of our proposed model decreases and the mAP@all on validation set increases. The best model
is selected according to the performance on validation set.

Moreover, our model adopts the same validation set used in
SEM-PCYC [36] to test the performance after each training
epoch. The performance on the validation set and the total loss
of our proposed model are shown in Figure 4; each training
epoch takes about 70 seconds. Since the training loss is calcu-
lated under the zero-shot scenario and the samples of unseen
classes cannot be used during training, the optimal parameters
for our proposed model are based on the performance on the
validation set.

C. Comparison With Peer Methods
Existing relevant SBIR and ZSL approaches are also

adopted for retrieval performance evaluation, since the
ZS-SBIR task can be considered as a combination of SBIR
and ZSL. To facilitate fair comparison, the same seen-unseen
splits of categories are used for all relevant experiments.

The performances of all comparison methods under the
same zero-shot setting on two datasets are presented in Table I.
As can be seen from Table I, most of the ZS-SBIR methods
achieve better performance than the SBIR and ZSL methods,
while GN Triplet [11] and SAE [9] achieve the best perfor-
mance in SBIR and ZSL, respectively. The SBIR methods
mainly solve the problem of cross-modal retrieval, while the
ZSL methods migrate the semantic knowledge from seen to
unseen classes. However, because these two methods each only
solve one aspect of the problem, it is difficult for them to solve
the combined problem of ZS-SBIR. The ZS-SBIR methods
therefore achieve better performance, as they possess both the
ability to reduce the domain gap and the ability to transfer the
semantic knowledge. Moreover, all methods performed worse
on TU-Berlin [12]; this may be caused by the large number
of classes in this dataset. Furthermore, under the zero-shot
setting, our model significantly outperforms the best competi-
tor [37] by more than 3% on Sketchy and 6% on TU-Berlin.
This demonstrates that the effectiveness of our proposed model
is derived from the progressive strategy employed, which
can maintain the integrity of the knowledge and enhance the
ability to reduce the domain gap and intra-class variances.
Moreover, the cross-reconstruction loss further enables the
semantic features to acquire more semantic knowledge, which
is beneficial to the transfer of knowledge from seen to unseen
classes. Finally, the classification loss ensures that the retrieval
features are discriminative, while the multi-modal Euclidean

loss ensures increased similarity between the retrieval features
of the same class from different modalities; both of them
improve the performance of our model in retrieval tasks.

Furthermore, the iterative quantization (ITQ) [50] algorithm
is utilized to obtain the binary codes for the retrieval features.
As can be seen from the experimental results, the retrieval
performance of binary codes decreases to some extent;
however, binary retrieval only requires XOR operations, which
is faster than utilizing the original features. In order to better
demonstrate the performance of binary codes, we count the
retrieval time of our model, the results of which can be seen
in Table II. From these results, we can conclude that using
binary code takes an order of magnitude less time than using
real features for retrieval.

The images retrieved using our model are shown in Figure 3.
Red borders indicate wrongly returned images. From these
results, we can observe that our proposed model is able to
maintain semantic consistency well, and that this performance
is not affected by size, pose, or background. For example,
the retrieved ‘sailboat’ images differ in size, while the retrieved
‘bicycle’ images differ in terms of their background. However,
the retrieved images closely match the outline of the searching
sketch, which can result in the retrieval of images with similar
shapes but different categories. For example, the retrieved
results for ‘signal-light’ contain an image of hydrant.

D. Effect of Side Information

Side information is important in zero-shot learning, as it
can provide semantic similarity between categories. Moreover,
since different types of semantic embeddings have different
impacts on performance, we analyze the effects of different
semantic embeddings (as well as different combinations of
such embeddings) on retrieval performance. Table III presents
the quantitative results on both Sketchy and TU-Berlin with
different side information mentioned and their combinations.
As the results show, the combination of Word2Vec [32]
and Jiang-Conrath’s hierarchical similarity [51] reaches
the highest mAP@all of 52.3% on Sketchy, while on the
TU-Berlin dataset, the combination of Word2Vec [32] and
path similarity reaches the highest mAP@all of 42.4%.
Furthermore, the results also show the same conclusions
as presented in [36]: that is, for ZS-SBIR, Word2Vec is
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TABLE I

PERFORMANCE COMPARISONS WITH EXISTING SBIR, ZSL, AND ZS-SBIR APPROACHES

TABLE II

RETRIEVAL TIME USING BINARY AND REAL FEATURES
ON TWO DATASETS

TABLE III

MAP@ALL OF ZS-SBIR BY USING DIFFERENT SEMANTIC EMBEDDINGS

AND THEIR COMBINATIONS ON TWO DATASETS

better than GloVe at capturing semantic similarity between
words. Moreover, the text-based model and the hierarchical
model complementarily work together to represent semantic
information.

E. Ablation Studies

In this section, some ablation studies are presented to verify
the effectiveness of our proposed model. The results are exhib-
ited in Table IV. In order to verify the validity of generating
retrieval features in a progressive way, we first train a model

that projects the image and sketch features directly into the
low-dimensional retrieval space, and meantime reduces the
dimension of word vectors in order to obtain 64-dimensional
features that are used to constrain the relationship between
the projected features. Second, we train a baseline that gen-
erates the retrieval features in a progressive way. In order
to obtain the semantic features of the same dimension as
word vectors, the baseline first aligns the sketch and image
features to the word vectors, then takes the semantic features
as input of the decoders to generate 64-dimensional retrieval
features. The decoders used to generate the retrieval features
do not share parameters in this baseline. Next, we make the
decoders that generate the retrieval features share parameters
to prove that this strategy can alleviate over-fitting. Moreover,
to demonstrate the effectiveness of the multi-modal Euclidean
loss and cross-reconstruction loss, we conduct experiments
by alternatively ablating Lcmt and Lrec in Eq. (13). Finally,
in order to prove the effectiveness of the cross-reconstruction
loss, we also conduct experiments with single-reconstruction
loss, such that the learned semantic features only reconstruct
the original modality of the current branch. The single recon-
struction loss can be formulated as follows:

Lsin_rec = ||x̃ ske
ske − xske ||22 + ||x̃ img

img − ximg ||22. (16)

The mAP@all values obtained by the baselines described
above are presented in Table IV. As the results indicate,
these baselines achieve lower performance than the complete
model. The baseline, which generates the retrieval features in
a progressive way, performs better than the model that directly
projects the sketch and image features into a low-dimensional
common space. Given that ZS-SBIR is a combination of
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TABLE IV

ABLATION STUDIES ON OUR MODEL MAP@ALL RESULTS OF SEVERAL BASELINES

Fig. 5. Visualization of the retrieval features learned from sketch modality using two different methods on the TU-Berlin dataset. We sample 10 classes of
from test categories and visualize the distribution of the features. Each color represents a particular class.

two tasks, the progressive way is reasonable; this is because
the first step synthesizes the semantic features of the same
dimension as the word vectors by explicit alignment, which
maintains the same empirical distribution as the word vec-
tors [52], while the second step projects the aligned features
to a low-dimensional common space, which is significant for
retrieval. We further visualize the distributions of the retrieval
features with t-SNE [53]. From Figure 5, it can be seen that the
distribution of retrieval features learned using the progressive
method is more discriminative than the alternative. The results
demonstrate that this strategy can improve performance by
more than 6% on Sketchy and 5% on TU-Berlin. We also
calculate the discrimination ratio [54] of the retrieval features,
which are learned both with and without the progressive
method. The discrimination ratio is measured by the ratio
of between-class scatter to within-class scatter; the greater
this ratio is, the more discriminative the retrieval features are.
In order to measure the discrimination of retrieval features of
a specific category, the between-class scatter is the average of
the distances between the centroids of each unseen class and
its nearest class. Moreover, the formula of within-class scatter
is as follows:

S2 = E(||xret
ske − E(xret

ske)||22). (17)

We select ten unseen categories in TU-Berlin to compute
their discrimination ratio; each of these categories contains
80 sketches. From Figure 6, we can see that the discrimination
ratio of retrieval features generated in the progressive way

Fig. 6. The discrimination is measured by the ratio of between-class scatter
to within-class scatter. The greater this ratio is, the more discriminative the
categories are.

is greater than those generated without the progressive way,
which demonstrates that the semantic information is better
retained when the progressive method is used. Moreover, in the
retrieval feature decoding stage, two decoders are trained
respectively in the baseline, which can lead to over-fitting.
Therefore, parameters sharing is beneficial to preventing both
branches from over-fitting their own modalities, and also
outperforms the baseline by around 2% both on Sketchy
and TU-Berlin. Furthermore, the imposition of multi-modal
Euclidean loss guarantees the similarity of retrieval fea-
tures from different modalities, which is conducive to the
metrics of distance space for the retrieval task. However,
the semantic features learned by adversarial training only maps
the sketch and image features to a semantic space, which
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cannot guarantee that the sketch-image pairs of the same
category will be matched. Therefore, the imposition of the
reconstruction constraint ensures the correspondence of the
sketch-image categories. The single-reconstruction loss only
considers the translation back to the current modality, while the
cross-reconstruction loss considers the corresponding modal-
ity, which facilitates the transfer of knowledge from both
two modalities. Finally, the full model reaches the highest
mAP@all of 52.3% on Sketchy and 42.4% on TU-Berlin.

V. CONCLUSION

In this article, we have presented a novel network designed
to address the problem of ZS-SBIR more effectively in a pro-
gressive way. The progressive generation of retrieval features
solves the problem of knowledge loss that occurs due to the
lack of explicit alignment, which is conducive to the migra-
tion of knowledge from seen to unseen classes. Moreover,
the cross-reconstruction loss guarantees the increased suffi-
ciency of the semantic features, which is crucial to transferring
knowledge from both modalities and reducing the domain gap.
Subsequently, decoders with shared parameters are utilized to
generate retrieval features under the constraint of classification
loss, which can alleviate over-fitting. In addition, the use of
multi-modal Euclidean loss enhances the similarity of retrieval
features that are in the same class but from different modali-
ties, which improves the retrieval performance by reducing the
domain gap. Experiments on two large-scale datasets verified
that our proposed model significantly outperforms existing
methods in the ZS-SBIR task.

REFERENCES

[1] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep
hashing network for cross-modal retrieval,” IEEE Trans. Image Process.,
vol. 27, no. 8, pp. 3893–3903, Aug. 2018.

[2] L. Jin, K. Li, H. Hu, G.-J. Qi, and J. Tang, “Semantic neighbor graph
hashing for multimodal retrieval,” IEEE Trans. Image Process., vol. 27,
no. 3, pp. 1405–1417, Mar. 2018.

[3] C. Deng, E. Yang, T. Liu, J. Li, W. Liu, and D. Tao, “Unsupervised
semantic-preserving adversarial hashing for image search,” IEEE Trans.
Image Process., vol. 28, no. 8, pp. 4032–4044, Aug. 2019.

[4] G.-J. Qi, X.-S. Hua, and H.-J. Zhang, “Learning semantic distance from
community-tagged media collection,” in Proc. 17th ACM Int. Conf.
Multimedia (MM), 2009, pp. 243–252.

[5] S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and T. S. Huang,
“Factorized similarity learning in networks,” in Proc. IEEE Int. Conf.
Data Mining, Dec. 2014, pp. 60–69.

[6] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang, “Few-shot image
recognition with knowledge transfer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 441–449.

[7] G.-J. Qi, W. Liu, C. Aggarwal, and T. Huang, “Joint intermodal and
intramodal label transfers for extremely rare or unseen classes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7, pp. 1360–1373,
Jul. 2017.

[8] A. Frome et al., “Devise: A deep visual-semantic embedding model,”
in Proc. NIPS, 2013, pp. 2121–2129.

[9] E. Kodirov, T. Xiang, and S. Gong, “Semantic autoencoder for zero-shot
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 3174–3183.

[10] L. Chen, H. Zhang, J. Xiao, W. Liu, and S.-F. Chang, “Zero-shot
visual recognition using semantics-preserving adversarial embedding
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1043–1052.

[11] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The sketchy database:
Learning to retrieve badly drawn bunnies,” ACM Trans. Graph., vol. 35,
no. 4, p. 119, Jul. 2016.

[12] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?” ACM
Trans. Graph., vol. 31, no. 4, pp. 1–44, Jul. 2012.

[13] R. Hu and J. Collomosse, “A performance evaluation of gradient field
HOG descriptor for sketch based image retrieval,” Comput. Vis. Image
Understand., vol. 117, no. 7, pp. 790–806, Jul. 2013.

[14] J. M. Saavedra, “Sketch based image retrieval using a soft computation
of the histogram of edge local orientations (S-HELO),” in Proc. IEEE
Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 2998–3002.

[15] J. M. Saavedra and J. M. Barrios, “Sketch based image retrieval using
learned KeyShapes (LKS),” in Proc.Brit. Mach. Vis. Conf., vol. 1, no. 2,
2015, p. 7.

[16] Q. Yu, F. Liu, Y.-Z. Song, T. Xiang, T. M. Hospedales, and
C. C. Loy, “Sketch me that shoe,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 799–807.

[17] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[18] D. Xu, X. Alameda-Pineda, J. Song, E. Ricci, and N. Sebe, “Cross-paced
representation learning with partial curricula for sketch-based image
retrieval,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4410–4421,
May 2018.

[19] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Sketch-a-net: A deep neural network that beats humans,” Int. J. Comput.
Vis., vol. 122, no. 3, pp. 411–425, May 2017.

[20] X. Li, S. Liao, W. Lan, X. Du, and G. Yang, “Zero-shot image tagging
by hierarchical semantic embedding,” in Proc. 38th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr. (SIGIR), 2015, pp. 879–882.

[21] T. Dutta and S. Biswas, “Generalized zero-shot cross-modal retrieval,”
IEEE Trans. Image Process., vol. 28, no. 12, pp. 5953–5962, Dec. 2019.

[22] J. Qin et al., “Zero-shot action recognition with error-correcting output
codes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2833–2842.

[23] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-embedding
for image classification,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 7, pp. 1425–1438, Jul. 2016.

[24] S. Changpinyo, W.-L. Chao, and F. Sha, “Predicting visual exemplars of
unseen classes for zero-shot learning,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 3476–3485.

[25] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning
through cross-modal transfer,” in Proc. NeurIPS, 2013, pp. 935–943.

[26] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele,
“Latent embeddings for zero-shot classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 69–77.

[27] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model for
zero-shot learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 2021–2030.

[28] F. Jurie, M. Bucher, and S. Herbin, “Generating visual representations
for zero-shot classification,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2017, pp. 2666–2673.

[29] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classi-
fication for zero-shot visual object categorization,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 3, pp. 453–465, Mar. 2014.

[30] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, “Evalua-
tion of output embeddings for fine-grained image classification,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 2927–2936.

[31] S. Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep representa-
tions of fine-grained visual descriptions,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 49–58.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[33] G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[34] Y. Shen, L. Liu, F. Shen, and L. Shao, “Zero-shot sketch-image hashing,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3598–3607.

[35] S. Kiran Yelamarthi, S. Krishna Reddy, A. Mishra, and A. Mittal,
“A zero-shot framework for sketch based image retrieval,” in Proc.
ECCV, 2018, pp. 300–317.

[36] A. Dutta and Z. Akata, “Semantically tied paired cycle consistency
for zero-shot sketch-based image retrieval,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5089–5098.

[37] T. Dutta and S. Biswas, “Style-guided zero-shot sketch-based image
retrieval,” in Proc. BMVC, 2019, p. 209.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 30,2020 at 12:45:50 UTC from IEEE Xplore.  Restrictions apply. 



8902 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

[38] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[42] Y. Qi, Y.-Z. Song, H. Zhang, and J. Liu, “Sketch-based image retrieval
via siamese convolutional neural network,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2016, pp. 2460–2464.

[43] M. Wang, C. Wang, J. X. Yu, and J. Zhang, “Community detection
in social networks: An in-depth benchmarking study with a procedure-
oriented framework,” VLDB, vol. 8, no. 10, pp. 998–1009, 2015.

[44] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao, “Deep sketch hashing: Fast
free-hand sketch-based image retrieval,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2862–2871.

[45] J. Zhang et al., “Generative domain-migration hashing for sketch-to-
image retrieval,” in Proc. ECCV, vol. 2018, pp. 297–314.

[46] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval and
person re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4766–4779, Dec. 2015.

[47] Z. Zhang and V. Saligrama, “Zero-shot learning via joint latent simi-
larity embedding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 6034–6042.

[48] R. Felix, V. B. Kumar, I. Reid, and G. Carneiro, “Multi-modal
cycle-consistent generalized zero-shot learning,” in Proc. ECCV, 2018,
pp. 21–37.

[49] Y. Yang, Y. Luo, W. Chen, F. Shen, J. Shao, and H. T. Shen, “Zero-
shot hashing via transferring supervised knowledge,” in Proc. ACM
Multimedia Conf. (MM), 2016, pp. 1286–1295.

[50] L. Liu, M. Yu, and L. Shao, “Learning short binary codes for large-
scale image retrieval,” IEEE Trans. Image Process., vol. 26, no. 3,
pp. 1289–1299, Mar. 2017.

[51] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” 1997, arXiv:cmp-lg/9709008. [Online].
Available: https://arxiv.org/abs/cmp-lg/9709008

[52] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[53] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[54] B. Tong, C. Wang, M. Klinkigt, Y. Kobayashi, and Y. Nonaka, “Hier-
archical disentanglement of discriminative latent features for zero-
shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2019, pp. 11467–11476.

Cheng Deng (Senior Member, IEEE) received the
B.E., M.S., and Ph.D. degrees in signal and infor-
mation processing from Xidian University, Xi’an,
China. He is currently a Full Professor with the
School of Electronic Engineering, Xidian Univer-
sity. His research interests include computer vision,
pattern recognition, and information hiding. He is
the author and coauthor of more than 100 scientific
articles at top venues, including the IEEE TRANS-
ACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS (TNNLS), the IEEE TRANSACTIONS ON

IMAGE PROCESSING (TIP), the IEEE TRANSACTIONS ON CYBERNETICS

(TCYB), the TRANSACTIONS ON MULTIMEDIA (TMM), the TRANSACTIONS
ON SYSTEMS, MAN, AND CYBERNETICS (TSMC), ICCV, CVPR, ICML,
NIPS, IJCAI, and AAAI.

Xinxun Xu received the B.Sc. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2017, and the M.S.
degree in electronics and communications engineer-
ing from Xidian University, Xi’an, China, in 2020.
His research interests include zero-shot learning,
sketch-based image retrieval, and deep learning.

Hao Wang received the B.E. degree in electronic
and information engineering from Hangzhou Dianzi
University, China, in 2015. He is currently pursuing
the Ph.D. degree with the School of Electronic Engi-
neering, Xidian University, Xi’an, China. His main
research interests include human action recognition,
video understanding, and zero shot learning.

Muli Yang received the B.E. degree in electronic
science and technology from Xidian University,
Xi’an, China, where he is currently pursuing the
Ph.D. degree with the School of Electronic Engineer-
ing. His research interests include computer vision,
visual reasoning, and machine learning.

Dacheng Tao (Fellow, IEEE) is currently a Pro-
fessor of computer science and an ARC Laureate
Fellow with the School of Computer Science and
the Faculty of Engineering, The University of Syd-
ney. His research results in artificial intelligence
have expounded in one monograph and more than
200 publications at prestigious journals and promi-
nent conferences, such as the IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE (TPAMI), IJCV, JMLR, AIJ, AAAI, IJCAI,
NeurIPS, ICML, CVPR, ICCV, ECCV, ICDM,

and KDD, with several best paper awards. He received the 2018 IEEE
ICDM Research Contributions Award and the 2015 Australian Museum
Scopus-Eureka Prize. He is a Fellow of AAAS, ACM, and the Australian
Academy of Science.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 30,2020 at 12:45:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


